

Mars-Moon Exploration, Reconnaissance, and Landed Investigation

Andrew Rivkin, Scott Murchie, Nancy Chabot, Albert Yen, Raymond Arvidson, Justin Maki, Ashitey Trebi-Ollennu, Alian Wang, Ralf Gellert, Michael Daly, Frank Seelos, Douglas Eng, Yanping Guo, and Elena Adams

International Planetary Probe Workshop Toulouse, France

Phobos and Deimos

	Phobos	Deimos
Size	27 x 21 x 19 km	15 x 12 x 10 km
Orbital Period	7.66 hrs	30.3 hrs
Density	1.9 g/cm ³	1.5 g/cm ³
Semi-major axis	9,377 km (2.8 R _{Mars})	23,460 km (~7 R _{Mars})
Gravity	2-8 x 10 ⁻³ m/s ²	2 x 10 ⁻³ m/s ²

- ...Are the only terrestrial planet satellites besides the Moon
- Therefore they provide insights into terrestrial planet formation
- Reconnaissance by several missions gives us a working knowledge of the moons' outstanding science issues

Spectral Properties

From: Fraeman et al. (2012)

- Very low albedo
- Reddish
- No sign of bound water,
 OH, or organics

CRISM FRT00002992

CRISM FRT00002983

	Phobos	Deimos
Size	27 x 21 x 19 km	15 x 12 x 10 km
Orbital Period	7.66 hrs	30.3 hrs
Density	1.9 g/cm ³	1.5 g/cm ³
Semi-major axis	9,377 km (2.8 R _{Mars})	23,460 km (~7 R _{Mars})
Gravity	2-8 x 10 ⁻³ m/s ²	2 x 10 ⁻³ m/s ²

Phobos and Deimos Science Drivers

- Composition and origin unknown – a record of the early Mars system lost from Mars' surface
- 2) Possibly C rich insight into origin of terrestrial planet C (and volatiles?)
- 3) A laboratory for small-body geologic processes

MERLIN Questions

What are the origins of Phobos and Deimos?

Primitive material

Formed from Mars material

Plus

- Explains low r, albedo
- Explains similarity to D-type asteroids
- Capture from outside Mars system hard to explain

Plus

- Explains the orbits if formed by co-accretion
- Minus
- Does not explain low albedo

Depending on the origin, a different composition is expected!

Origin Hypothesis	Composition Predicted	Elemental abundances	Mineral abundances
Capture of organic- and water-rich outer solar system body	Ultra-primitive composition; Tagish Lake is the best known analog	High C; high Zn/Mn; high S; composition possibly distinct from known meteorites	Abundant phyllosilicates; carbonates and organic phases; anhydrous silicate phases rare
Capture of organic and water-poor outer solar system body	Anhydrous silicates plus elemental C	High C; Mg/Fe ratio ~2–4; bulk composition unlike any meteorite analogs	Anhydrous, med. Fe (20–40%) pyroxene; abundant amorphous C or graphite?
Capture of inner solar system body	Composition like common meteorites (e.g., ordinary chondrites)	Mg/Si ~0.8–1, Al/Si ~0.05–0.1; Zn/Mn and Al/Mn ratios separate known meteorites; low C	Low carbonates, phyllosilicates; pyroxene, olivine probably in range of known meteorites
Co-accretion with Mars	Bulk Mars; similar to ordinary chondrites but specific SNC-derived composition	Mg/Si, Al/Si, Fe/Si indicative of bulk Mars; low C; Zn/Mn, Al/ Mn like ordinary chondrites	Anhydrous silicates with Fe, Mg expected for bulk Mars; low abundance of C-bearing phases
Giant impact on Mars	Evolved Martian crust or mantle, like SNC meteorites, Mars rocks or soil	High Al/Si, Ca/Si, lower Fe/Si, Mg/Si indicative of evolved igneous materials	Evolved, basaltic mineralogy consistent with many datasets for Mars

MERLIN Questions

Are they water-rich, carbon-rich bodies?

- Spectrally, Deimos is D-type and may be carbon and volatile-rich
- Remote measurements are ambiguous about composition
- Need in situ composition measurements to understand the D-type objects and characterize C-containing materials

10-02253-007 (Zolensky and Ivanov, 2003)

Kaidun Meteorite

What processes were important in Deimos' evolution?

- Impacts?
- Space weathering?
- Material exchange with Phobos/ Mars or other extinct martian moons?

MERLIN Traceability to Visions and Voyages

Questions about Phobos / Deimos	Visions and Voyages Primitive Bodies Questions	Relevant Measurements	
What are Phobos' and		Elemental composition	
Deimos' origin and	What were the initial stages,	Mineral abundance	
relationship to other solar	conditions and processes of solar system formation?	Shape and volume	
system bodies?	-	Mass and mass distribution	
Do Phobos and Deimos	What governed the supply of water to the inner planets?	Occurrence and abundance of hydrated minerals	
contain water and carbon, and in what form?	What were the primordial sources	Occurrence and abundance of C phases	
	of organic matter?	Abundance of elemental C	
	How have the myriad chemical	Characterize regolith movement and gradation	
What geologic processes that have shaped Phobos' and Deimos' surface and regolith?	and physical processes that shaped the solar system operated, interacted, and evolved	Determine processes by which grooves form	
	over time?	Determine how space weathering alters regolith properties	

	Elemental measurement (APXS)		Mineralogical measurement (Raman spectroscopy)		Imaging (orbital color/ morphology, landed panoramic / microscopic)		Radio science
--	------------------------------------	--	--	--	---	--	---------------

Highlights:

- Requires DV 1900 m/s incl. margin
- Bipropellant propulsion system
- 3-axis stabilized
- 120-kg Li-ion battery for 15-hr night
- Same design can target Phobos with smaller battery, tanks filled

MERLIN Payload

Investigation	Description, Heritage	Data Taken	
Body Mounted			
DDIS: Deimos Dual Imaging System	NAC: monochrome WAC: 11 spectral and 1 clear filter Based on MESSENGER MDIS/ NAC, WAC without gimbaling	Stereo mapping/ OpNav: global 1 m/pixel; 5 cm/ pixel during low flyovers Color mapping: global 10 m/pixel; 20 cm/pixel during low flyovers; descent imaging 1 mm/pixel	
TerrainCam, OpsCam Stereo Cameras	TerrainCam: 820 μrad/pixel, with azimuth articulation OpsCam: Stereo, 123° FOV, 2.1 mrad/pixel; Based on MER/Navcam, Hazcam	Stereo imaging of workspace to support arm operations; imaging at multiple photometric angles; local panoramas	
Arm-mounted			
APXS: Alpha Particle X-ray Spectrometer	Measures α and X-ray fluorescence from ²⁴⁴ Cm source; Based on MER/MSL APXS	≥ 3 landed elemental abundance measurements in α and X-ray modes	
MRS: MERLIN Raman Spectrometer	Laser scatter peaks at wavelengths diagnostic of minerals, C-phases	Sample of ≥100 landed infocus spectra in arm workspace	
MAC: MERLIN Arm Camera	Microscopic imaging, with LEDs for three- color imaging; Adapted from SM-4	Microscopic and synoptic color imaging of arm workspace	
Optional Enhancements to Address Human Exploration Strategic Knowledge Gaps			
Dosimeter	Measures radiation dose; Based on RBSP	Low-rate measurements of total dose	
Dust counter	Measures dust; Based on New Horizons	Times and magnitudes of particle impacts	

Cruise to Mars

Cruise Phase

MERLIN Mission: Transition Phase

MOI and Transition to Orbit at Deimos

MERLIN Mission: Low Flyover Phase

Possible landing sites (selected prior to launch) characterized during low flyovers

Deimos Flyovers

MERLIN Mission: Landing / Landed Ops

During landing, images used for terrain navigation are downlinked real time

Landed investigation takes ~60 days. The spacecraft can "hop" to 1 or 2 additional sites.

Landing and Landed Operations

MERLIN Fills Strategic Knowledge Gaps

MERLIN Measurements	Human Exploration Strategic Knowledge Gap Addressed	
Measure abundances of major, minor elements using APXS	Regolith elemental composition	
Measure abundances of major mineral phases using MRS	_	
Constrain regolith heterogeneity using high resolution color imaging by DDIS/WAC during low flyovers, descent	Regolith mineralogical composition	
Measure global shape using stereo imaging by DDIS/NAC	Shape model, pole, rotational state	
Image in stereo morphologic features indicative of regolith processes using DDIS/NAC		
Determine regolith texture with imaging by TerrainCam, MAC	Regolith mechanical properties High-resolution terrain model	
Constrain space weathering by repeating Raman measurements at surface and after excavating 1 cm		
Nested descent images during landing to locate landing site	Plume effects on regolith	
Measure mass and mass distribution using Doppler tracking	Small body gravitational field	
Measure abundances of H ₂ O, OH-bearing phases w/ MRS	Volatiles and potential for <i>in situ</i> resource utilization	
Measure abundances of C-bearing phases w/ MRS		
Measure content of C w/ APXS		
Bound radiation effect on space weathering /measuring dose	Human tissue effects	
Constrain density of dust belts using dust counter	Mars orbital debris environment	